Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин (2001)
-
Год:2001
-
Название:Курс на Марс. Самый реалистичный проект полета к Красной планете
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:А. М. Зубарева
-
Издательство:Эксмо
-
Страниц:242
-
ISBN:978-5-699-75295-9
-
Рейтинг:
-
Ваша оценка:
Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин читать онлайн бесплатно полную версию книги
Существует альтернатива: использовать смесь метана и кислорода (СН4/О2). Главное ее преимущество заключается в том, что смесь метан/кислород обладает высочайшим значением удельного импульса (380 секунд) среди химических соединений, ее легко запасать на длительный срок прямо на поверхности Марса. Поскольку двигатели СН4/O2 не выпускаются в промышленных масштабах, эта комбинация была успешно испытана в двигателях RL-10 на тестовом стенде, и производители двигателей «Пратт энд Уитни» опубликовали данные, показывающие, что модификация RL-10 для СН4/O2 будет работать без затруднений и обойдется недорого. Но есть одна проблема: чтобы произвести метан, потребуется водород, который сложно найти на Марсе. Так где же на Марсе раздобыть водород? В 1976 году профессор Роберт Эш, сейчас работающий в Университете Старого Доминиона, и некоторые его единомышленники из ЛРД опубликовали статью с изложением некоторых чрезвычайно простых, надежных и хорошо проверенных (еще в газовую эру) идей химической инженерии, которые позволяют получить двухкомпонентное топливо из метана и кислорода на Марсе при условии, что будет найден какой-то источник воды. Вода – вот в чем главная сложность. Добыча воды из марсианской вечной мерзлоты не самый эффективный вариант для первой автоматической миссии, а конденсация воды из крайне сухой атмосферы Марса крайне сложна. Поэтому Эш принялся исследовать производство смеси угарного газа и кислорода. Рассматривая предложение Эша, я понял, что единственная проблема его группы – чрезмерный пуризм, то есть упор на то, что все компоненты топлива должны иметь марсианское происхождение. На самом же деле для поддержания предложенного ими химического процесса нужно использовать водород, масса которого составит всего 5 % от общей массы произведенного топлива. Так почему бы просто не привезти относительно небольшое количество водорода с Земли? Я проконсультировался с экспертами по хранению криогенных (сверххолодных) жидкостей из «Мартин Мариетта», и они были единодушны во мнении, что с хранением примерно 6 тонн водорода для восьмимесячного полета с Земли на Марс вполне можно справиться при условии, что мы начнем с количества примерно на 15 % больше, чтобы компенсировать потери на испарение в пути (на Марсе испаряющийся водород можно направлять непосредственно в метановый реактор и тем самым избежать потерь). В теории это решит проблему производства подходящего для марсианских условий ракетного топлива.
Тем временем, благодаря помощи Сида Эрли, аналитика траекторий космических аппаратов из «Мартин Мариетта», Бейкер переработал «Шаттл Зет» в «Арес», ракету-носитель, способную не только поднимать полезную нагрузку на низкую околоземную орбиту, но и отправлять непосредственно в межпланетное пространство (рис. 3.1). Бейкер также выдвинул предложение использовать отработавшую верхнюю ступень «Ареса» как противовес на конце вращающегося троса для создания искусственной гравитации в жилом модуле экипажа во время полета на Марс. Идея создать искусственную гравитацию с помощью троса не была принципиально новой, но наш план выглядел гораздо более надежным, чем другие, поскольку объект на конце троса не имел большой важности для миссии. В более традиционных миссиях из-за огромной массы корабля, стартующего с Земли, сила тяжести создавалась следующим образом: содержимое корабля делилось на две части, и необходимые для миссии компоненты, такие как ступени с химическими реактивными двигателями, без которых нельзя вернуться на Землю, перемещались на дальний конец троса. Если такой трос порвется, когда придет время смотать его, миссия будет провалена. А в нашей схеме трос вообще не нужно сматывать. Скорей всего, его просто выпустят или перережут пироболтом, когда обитаемый модуль достигнет Марса. Это можно назвать ключевым преимуществом нашей архитектуры для снижения рисков миссии.
Рис. 3.1. Эволюция ракет-носителей от «Шаттла Си» до «Шаттла Зет» и «Ареса»