Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин (2001)
-
Год:2001
-
Название:Курс на Марс. Самый реалистичный проект полета к Красной планете
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:А. М. Зубарева
-
Издательство:Эксмо
-
Страниц:242
-
ISBN:978-5-699-75295-9
-
Рейтинг:
-
Ваша оценка:
Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин читать онлайн бесплатно полную версию книги
Шахтеры, работающие на астероидах, не смогут производить большую часть необходимого им продовольствия на месте. Таким образом, возникнет потребность в импорте продуктов питания и других необходимых товаров или с Земли, или с Марса. Как показано в табл. 8.1 ниже, у Марса в этом отношении будет масса преимуществ. Они связаны с тем, что значения ΔV для запуска реактивной ракеты с Марса гораздо меньше, чем для запуска с Земли, и как следствие, отношение масс (полная масса заправленного космического корабля, деленная на его сухую массу), которое требуется для космических аппаратов, покидающих Марс, также намного меньше.
В таблице 8.1 в качестве примера рассматривается Церера, крупнейший астероид,[29] расположенный самом центре главного пояса. Однако вы заметите, что я также упоминаю Луну как потенциальный порт назначения. Несмотря на то что она намного ближе к Земле, с точки зрения реактивного движения, гораздо легче достичь Луны с Марса! Для такого запуска требуется отношение масс всего в 12,5, в то время как для полета с Земли на Луну это отношение должно составлять 57,6. И по той же причине путешествия с Земли или с Марса практически на любой околоземный астероид будут менее удобными, чем к астероидам основной группы главного пояса.
Таблица 8.1. Перелеты во внутренней Солнечной системе
Все строки в табл. 8.1, за исключением последних двух, рассчитаны для системы транспортировки с метаново-кислородными (СН4/O2) двигателями с удельным импульсом в 380 секунд и ΔV, подходящими для траекторий с использованием высокоэффективных химических двигательных установок. Они были выбраны потому, что смесь метана и кислорода обладает самым высоким удельным импульсом из всех видов топлива, которые можно хранить в космосе, и ее можно изготовить на Земле, на Марсе или на углеродистом астероиде. Топливо из смеси водорода и кислорода хоть и имеет более высокий удельный импульс (450 секунд), не может долго храниться в космосе. Более того, оно непригодно для дешевых многоразовых космических транспортных систем, поскольку его стоимость почти на порядок выше, чем для смеси метана и кислорода, и его объемность затрудняет транспортировку топлива на орбиту, если применять многоразовые одноступенчатые ракеты РОСД (но это позволяет использовать его для действительно недорогих ракет для доставки с Земли на НОО). Последние две записи в таблице рассчитаны для ядерных электрических ракет (ЯЭР): для движения в космосе предлагается аргонное топливо с удельным импульсом в 5 тысяч секунд, доступное и на Земле, и на Марсе, а для запуска с поверхности к НОО – смесь метана и кислорода. Такие системы РОСД и ЯЭР, хотя и кажутся сегодня фантастикой, в будущем обещают стать надежной основой для технологии межпланетных перевозок.
Можно видеть, что, если использовать исключительно химические системы двигателей, то отношение масс, необходимое для того, чтобы доставить сухую массу к поясу астероидов с Земли, в 14 раз больше, чем если производить запуск с Марса. Это означает, что при полете с Марса на Цереру отношение массы полезной нагрузки к взлетной массе ракеты по-прежнему гораздо больше, чем при полете с Земли на Цереру. На самом деле расчеты в табл. 8.1 позволяют сделать вывод, что выгодная торговля между Землей и Церерой (или любым другим телом в главном поясе астероидов) с использованием химических двигателей скорее всего невозможна, тогда как между Марсом и Церерой организовать ее не составит большого труда. Так что из таблицы видно, что отношение масс для доставки грузов с Марса на Луну почти в пять раз выше, чем для полетов с Земли на Луну.
Если появляются ядерные электрические ракеты, расклад меняется, но не очень значительно. Марс по-прежнему обладает семикратным преимуществом перед Землей с позиции отношения масс, а значит, отношение полезной нагрузки к взлетной массе ракеты почти в сто раз выше для полета с Марса, чем с Земли.