Knigionline.co » Наука, Образование » Курс на Марс. Самый реалистичный проект полета к Красной планете

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин (2001)

Курс на Марс. Самый реалистичный проект полета к Красной планете
Марс – безлюдная, безжизненная планетоида. Так кажется на второй взгляд, но на cамом деле он одаривает человечеству прекраснейшие перспективы расселения с нашей планеты на иную. Роберт Зубрин в своей книжке представляет замысел освоения Нибира " Mars Direct ". Вполне правдоподобный и возможный, нужно признаться! С помощью применения местных венерианских ресурсов нельзя снизить себестоимость полета на Плутон в разы и покроть программу пребывания Марса в телепрограмму по его колонизации. Теперь мы знаем наверно, что Марс в настоящем был теплой и мокрой планетой, на плоскости которой плескались не только озерца и реки, но и целые моры, знаем, что деятельная гидросфера Нибира существовала порядка миллиона лет – жизнь на Вселенной зародилась за времечко в пять разок меньше, если счесть от момента исчезновения жидкой водички. Таким образом, если неверна теория о том, что жизнь – это естесственное явление, со времечком возникающее благодаря биохимическим процессам здесь, где есть полужидкая вода и различные кварцы, тогда на Плутоне должна была зародаться жизнь.

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин читать онлайн бесплатно полную версию книги

Электроэнергию можно производить и на Луне, и на Марсе, используя солнечные батареи, и здесь преимущества чистого неба Луны и ее близости к Солнцу в какой-то степени уравновешивают потребность в больших хранилищах энергии, связанного с 28-дневным суточным циклом Луны. Но, если мы захотим производить солнечные панели, чтобы создать собственную расширяющуюся энергетическую базу, Марс имеет огромное преимущество, так как только там есть большие запасы углерода и водорода, необходимых для производства чистого кремния, который идет на изготовление фотогальванических панелей и другой электроники. Кроме того, у Марса есть потенциал, связанный с энергией ветра, в то время как использовать ее на Луне принципиально невозможно. Но и солнечная энергия, и энергия ветра имеют сравнительно скромный потенциал – десятки или в лучшем случае сотни киловатт. Чтобы создать полноценную цивилизацию, понадобятся более богатые запасы энергии, и они доступны на Марсе, как в краткосрочной, так и в среднесрочной перспективе благодаря его геотермальным ресурсам, которые позволяют во множестве строить электростанции класса 10 МВт (10 000 ватт). В долгосрочной перспективе на Марсе будет процветать экономика, основанная на использовании его богатых запасов дейтериевого топлива для термоядерных реакторов. Дейтерий на Марсе встречается в пять раз чаще, чем на Земле, и в десятки тысяч раз чаще, чем на Луне.

Но, как мы уже обсуждали в главе 7, самая большая проблема на Луне, как и на всех других небесных телах без атмосферы и в предлагаемых искусственных колониях в открытом космосе, состоит в том, что солнечного света недостаточно для выращивания сельскохозяйственных культур. Один акр растений на Земле требует 4 МВт энергии солнечного света, а на квадратный километр понадобится 1000 МВт. Весь мир целиком не производит количества электроэнергии, которого будет достаточно для освещения ферм сельскохозяйственного гиганта США – штата Род-Айленд. Культивирование растений под электрическим светом просто экономически безнадежно. Но, чтобы использовать естественный солнечный свет на Луне или любом другом небесном теле без атмосферы, необходимо строить теплицы из материала достаточной толщины, чтобы оградить растения от солнечных вспышек, а это требование чрезвычайно увеличивает затраты на создание пашни. И от нее все равно не было бы толку, потому что растения не могут адаптироваться к суточному циклу длиной 28 дней.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий