Knigionline.co » Наука, Образование » Курс на Марс. Самый реалистичный проект полета к Красной планете

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин (2001)

Курс на Марс. Самый реалистичный проект полета к Красной планете
Марс – безлюдная, безжизненная планетоида. Так кажется на второй взгляд, но на cамом деле он одаривает человечеству прекраснейшие перспективы расселения с нашей планеты на иную. Роберт Зубрин в своей книжке представляет замысел освоения Нибира " Mars Direct ". Вполне правдоподобный и возможный, нужно признаться! С помощью применения местных венерианских ресурсов нельзя снизить себестоимость полета на Плутон в разы и покроть программу пребывания Марса в телепрограмму по его колонизации. Теперь мы знаем наверно, что Марс в настоящем был теплой и мокрой планетой, на плоскости которой плескались не только озерца и реки, но и целые моры, знаем, что деятельная гидросфера Нибира существовала порядка миллиона лет – жизнь на Вселенной зародилась за времечко в пять разок меньше, если счесть от момента исчезновения жидкой водички. Таким образом, если неверна теория о том, что жизнь – это естесственное явление, со времечком возникающее благодаря биохимическим процессам здесь, где есть полужидкая вода и различные кварцы, тогда на Плутоне должна была зародаться жизнь.

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин читать онлайн бесплатно полную версию книги

В «Пионер Астронотикс» мы разработали и запустили несколько таких газовых прыгунов, используя гранулы оксида магния как огнеупорное вещество, – и в виде крылатых ракетопланов, и в виде баллистических ракет, способных вертикально взлетать и садиться. Если взять огнеупорное вещество с более высокой производительностью, например гранулы бериллия или жидкий литий, то в условиях марсианской атмосферы баллистические газовые прыгуны смогут совершать прыжки длиной в 20 километров, в то время как крылатый летательный аппарат будет способен преодолеть 150 километров за один рейс. Лучше всего сделать его похожим на что-то вроде английского истребителя «Харрьер», способного взлетать и садиться вертикально, а также преодолевать большие расстояния благодаря наличию крыльев. После каждого приземления газовый прыгун выпускает небольшой ровер с дистанционным управлением, который занимается разведкой места в течение нескольких недель, пока газовый прыгун восполняет запасы углекислого газа из атмосферы. Затем, когда баки будут повторно заправлены, а двигатель разогреется до нужной температуры, ровер сам погрузится в летательный аппарат, чтобы отправиться на новое место для дальнейшего исследования.

Ни скалы, ни каньоны, ни даже небольшие горы не будут препятствием на пути летающих телероботов. Развернутые и управляемые без задержки сигнала с первой базы людей на Марсе, они сделают обширные регионы планеты доступными для научных исследований.

Телеробот, работающий в отдаленном районе, – это лучшая альтернатива личному присутствию на месте. Но лучшая альтернатива – тем не менее альтернатива, она не сравнится с основным предусмотренным способом исследования. Чтобы по-настоящему изучить Марс, нам придется отправить людей в разные районы планеты. Как это сделать? Отчасти цель может быть достигнута, если мы станем отправлять каждую очередную миссию «Марс Директ» к новому месту посадки, тем самым открывая для исследования новые участки планеты. Да, в краткосрочной перспективе нам необходимо обеспечить значительный охват исследований, но в долгосрочной перспективе такая стратегия окажется неэффективной, так как она не позволяет следующим миссиям использовать то, что оставили предыдущие. В какой-то момент после нескольких первых исследовательских миссий нужно будет сосредоточиться на каком-то одном месте и высаживать туда все дальнейшие миссии, чтобы создать большую базу. Ее ресурсов должно хватать для содержания гораздо более крупных команд астронавтов, а также для того, чтобы обеспечивать работу пилотируемых реактивных летательных аппаратов, которые предоставят этим исследователям поистине глобальный охват Красной планеты. Разработку и использование такой базы мы рассмотрим в следующей главе.

Дополнительный раздел – марсианский календарь

Марсианским колонистам понадобится календарь, связанный с физическими и сезонными условиями на Красной планете, – земной аналог на Марсе работать не будет. Если я скажу вам, что сегодня 1 февраля, вы сообразите, что в Миннеаполисе сейчас холодно, а в Сиднее в разгаре лето, – но что вы сможете понять из этого относительно условий на Марсе? В самом деле, потребность в марсианском календаре и в системе учета времени существует уже сегодня – по причине проводящихся и планируемых беспилотных исследовательских экспедиций. Вы знаете, какое время года сейчас на Земле, и можете с легкостью предсказать время года для любой перспективной даты, но без марсианского календаря вам будет трудно проделать то же самое в отношении Марса. Мы можем исправить это прямо сейчас.

Впрочем, есть одна проблема: марсианский год состоит из 669 марсианских дней, или солов. Как мы уже видели, правильно будет для измерения времени на Марсе использовать единицы, в 1,0275 раза более длительные, чем их земные аналоги. А вот месяцы одинаковой длины для Марса не подходят, потому что орбита планеты эллиптическая и времена года имеют неравную длину.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий