Путеводитель по лжи - Дэниел Левитин (2016)
-
Год:2016
-
Название:Путеводитель по лжи
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:Ольга Терентьева
-
Издательство:Манн, Иванов и Фербер (МИФ)
-
Страниц:14
-
ISBN:978-5-00100-840-8
-
Рейтинг:
-
Ваша оценка:
Путеводитель по лжи - Дэниел Левитин читать онлайн бесплатно полную версию книги
Есть три вида средних, и они могут выражаться разными числами. Поэтому те, кто всерьез занимается статистикой, избегают слова «среднее», отдавая предпочтение другим, более точным терминам, как то: среднее арифметическое, медиана или мода. И только так. Иногда все эти величины совпадают, но чаще они различаются. Если вам встретилось слово «среднее», оно, как правило, означает «среднее арифметическое», но нельзя быть в этом абсолютно уверенным.
Чаще других из этих трех встречается среднее арифметическое; оно равно сумме всех данных, поделенной на их количество. Например, среднее благосостояние всех людей, находящихся в комнате, будет равно их общему благосостоянию, поделенному на количество человек. Если в комнате находится десять человек, состояние каждого из которых оценивается в 100 тысяч долларов, то общее богатство составит миллион. Отсюда легко вычислить среднее арифметическое (даже доставать калькулятор не нужно): 100 тысяч долларов. А если состояние каждого присутствующего будет варьироваться от 50 тысяч до 150 тысяч долларов, но общее количество будет по-прежнему миллион, то среднее арифметическое по-прежнему будет 100 тысяч долларов (потому что мы просто разделим миллион на десять, не принимая во внимание, сколько денег на счете у каждого).
Медиана – это число в середине упорядоченного набора чисел (статистики называют его выборкой): половина данных находится ниже этого значения, а половина выше. Как вы помните, смысл среднего значения в том, чтобы охарактеризовать весь объем данных одним-единственным числом. Медиана лучше с этим справляется, если некоторые из ваших данных уж очень отличаются от большинства, статистики называют такие значения выбросами.
Представим себе комнату, в которой находятся девять человек; состояние восьмерых из них равно примерно 100 тысяч долларов, а один находится на грани банкротства, его долг равен 500 тысячам долларов. Вот что у нас получится:
Человек 1: –500 тыс. долл.
Человек 2: 96 тыс. долл.
Человек 3: 97 тыс. долл.
Человек 4: 99 тыс. долл.
Человек 5: 100 тыс. долл.
Человек 6: 101 тыс. долл.
Человек 7: 101 тыс. долл.
Человек 8: 101 тыс. долл.
Человек 9: 104 тыс. долл.
Теперь складываем все показатели и получаем общую сумму в 299 тысяч долларов. Разделим это число на общее количество участников, девять, и получится, что среднее арифметическое равно 33 222 долларам. Создается, однако, впечатление, что среднее арифметическое – не лучший способ охарактеризовать данные о присутствующих. Смею предположить, что фандрайзер не захочет наносить им визит, если среди них найдется человек с показателем-выбросом, который тянет вниз всю группу. В этом и заключается вся трудность работы со средним арифметическим: оно слишком чувствительно к выбросам.
Медиана здесь равна 100 тысячам долларов: четверо зарабатывают меньше этой суммы, а четверо – больше. Мода равна 101 тысяче долларов – это та цифра, которая появляется намного чаще других. И медиана, и мода в этом конкретном примере оказываются гораздо показательнее.
Можно по-разному использовать средние, особенно если вы хотите, чтобы кто-то увидел в ваших данных то, что нужно вам.