Базы данных конспект лекций - Коллектив авторов (2007)
-
Год:2007
-
Название:Базы данных конспект лекций
-
Автор:
-
Жанр:
-
Язык:Русский
-
Издательство:Эксмо
-
Страниц:83
-
ISBN:978-5-699-23778-4
-
Рейтинг:
-
Ваша оценка:
Четкое и лаконичное изложение материала, осознанный отбор важных тем позволяют качественно и быстро подготовиться к экзаменам по данному предмету, семинарам и зачетам.
Базы данных конспект лекций - Коллектив авторов читать онлайн бесплатно полную версию книги
В режиме решения задачи (или так называемом режиме консультации) общение с экспертными системами осуществляет непосредственно конечный пользователь, которого интересует концевой итог работы и иногда способ его получения. Необходимо отметить, что в зависимости от назначения экспертной системы пользователь не обязательно должен быть специалистом в данной проблемной области. В этом случае он обращается к экспертным системам за результатом, не имея достаточных знаний для получения результатов. Или все же пользователь может обладать уровнем знаний, достаточным для достижения необходимого результата самостоятельно. В этом случае пользователь может сам получить результат, но обращается к экспертным системам с целью либо ускорить процесс получения результата, либо возложить на экспертные системы монотонную работу. В режиме консультации данные о задаче пользователя после обработки их диалоговым компонентом поступают в рабочую память. Решатель на основе входных данных из рабочей памяти, общих данных о проблемной области и правил из базы данных формирует решение задачи. Экспертные системы при решении задачи не только исполняют предписанную последовательность конкретной операции, но и предварительно формирует ее. Это делается для случая, если реакция системы не совсем понятна пользователю. В этой ситуации пользователь может потребовать объяснения о том, почему данная экспертная система задает тот или иной вопрос или почему данная экспертная система не может выполнить данную операцию, как получен тот или иной результат, поставляемый данной экспертной системой.
5. Продукционная модель знаний
По своей сути продукционные модели знаний близки к логическим моделям, что позволяет организовать весьма эффективные процедуры логического вывода данных. Это с одной стороны. Однако, с другой стороны, если рассматривать продукционные модели знаний в сравнении с логическими моделями, то первые более наглядно отображают знания, что является неоспоримым преимуществом. Поэтому, несомненно, продукционная модель знаний является одним из главных средств представления знаний в системах искусственного интеллекта.
Итак, начнем подробное рассмотрение понятия продукционной модели знаний.
Традиционная продукционная модель знаний включает в себя следующие базовые компоненты:
1) набор правил (или продукций), представляющих базу знаний продукционной системы;
2) рабочую память, в которой хранятся исходные факты, а также факты, выведенные из исходных фактов при помощи механизма логического вывода;
3) сам механизм логического вывода, позволяющий из имеющихся фактов, согласно имеющимся правилам вывода, выводить новые факты.
Причем, что любопытно, количество таких операций может быть бесконечно.
Каждое правило, представляющее базу знаний продукционной системы, содержит условную и заключительную части. В условной части правила находится либо одиночный факт, либо несколько фактов, соединенных конъюнкцией. В заключительной части правила находятся факты, которыми необходимо пополнить рабочую память, если условная часть правила является истинной.
Если попытаться схематично изобразить продукционную модель знаний, то под продукцией понимается выражение следующего вида:
(i) Q; P; A → B; N;
Здесь i – это имя продукционной модели знаний или ее порядковый номер, с помощью которого данная продукция выделяется из всего множества продукционных моделей, получая некую идентификацию. В качестве имени может выступать некоторая лексическая единица, отражающая суть данной продукции. Фактически мы именуем продукцию для лучшего восприятия сознанием, чтобы упростить поиск нужной продукции из списка.