Эйнштейн. Его жизнь и его Вселенная - Уолтер Айзексон (2015)
-
Год:2015
-
Название:Эйнштейн. Его жизнь и его Вселенная
-
Автор:
-
Жанр:
-
Оригинал:Английский
-
Язык:Русский
-
Перевел:Инна Каганова, Татьяна Лисовская
-
Издательство:Corpus (АСТ)
-
Страниц:421
-
ISBN:978-5-17-079635-9
-
Рейтинг:
-
Ваша оценка:
Эйнштейн. Его жизнь и его Вселенная - Уолтер Айзексон читать онлайн бесплатно полную версию книги
В письме Шредингеру Эйнштейн описывает мысленный эксперимент, показывающий, почему все эти дискуссии о волновых функциях и вероятностях, о частицах, у которых нет определенной координаты до тех пор, пока на нее не смотрят, с его точки зрения, не выдерживают испытания на полноту. Представьте себе, говорит он, два ящика, в одном из которых, как мы знаем, есть мяч. Когда мы только готовимся заглянуть в один из ящиков, вероятность 50 %, что мяч мы там обнаружим. После того как мы заглянули в данный ящик, вероятность увидеть там мяч равна либо 100 %, либо нулю. Но в реальности мяч все время был в одном из ящиков. Эйнштейн пишет:
Я описываю положение дел так: с вероятностью 1/2 мяч находится в первом ящике. Является ли это полным описанием? Нет. Полное утверждение состоит в следующем: мяч есть (или его нет) в первом ящике. Так подобная ситуация должна характеризоваться при полном описании. Да, прежде чем я ящики открыл, мяч, вне всякого сомнения, находится в одном из них. То, что он находится в определенном ящике, выясняется только после того, как я поднял крышку19.
Эйнштейн явно предпочитал отрицательный ответ, что указывает на его приверженность реализму. Он чувствовал, что в положительном ответе, а именно такое объяснение предоставляет квантовая механика, есть нечто незавершенное.
Доводы Эйнштейна основываются на том, что представляется здравым смыслом. Однако бывает, что кажущееся разумным не приводит к правильному описанию природы. Строя теорию относительности, Эйнштейн осознавал это. Тогда, игнорируя общепринятые представления, он заставил нас изменить свой взгляд на природу. Квантовая механика сделала нечто похожее. Она провозгласила, что частица не находится в определенном состоянии, за исключением того момента, когда ее наблюдают. Две частицы могут находиться в перепутанном состоянии, таком, что наблюдение, выполненное над одной из них, мгновенно определяет и свойства другой. Как только наблюдение произведено, система оказывается в определенном состоянии20.
Эйнштейн никогда не признавал, что это и есть полное описание реальности. Через несколько недель, в начале августа 1935 года, он предложил Шредингеру еще один похожий мысленный эксперимент. В нем обсуждалась ситуация, в которой квантовая механика могла предоставить только вероятности, хотя здравый смысл с очевидностью указывал на то, что стоящая за ней реальность достоверно существует. Представьте себе, говорил Эйнштейн, бочонок с порохом, в котором из-за нестабильности одной из частиц в какой-то момент произойдет взрыв. В применении к этой системе уравнения квантовой механики “описывают своего рода смесь из еще не и уже взорвавшихся систем”. Но это не соответствует “реальному положению дел, – говорит Эйнштейн, – поскольку на самом деле нет промежуточного состояния между уже взорвавшимся и невзорвавшимся бочонком”21.
Шредингер предложил сходный мысленный эксперимент, чтобы указать на странность, свойственную взаимодействию неопределенности квантового мира с нашим привычным миром больших тел. Он использовал не бочонок с порохом, а ставшее впоследствии знаменитым вымышленное животное семейства кошачьих. “В пространном эссе, которое я только что написал, приводится пример, очень похожий на ваш взрывающийся пороховой бочонок”, – сообщает он Эйнштейну22.
В этом эссе, опубликованном в ноябре, Шредингер в полной мере отдает должное Эйнштейну и работе ЭПР, которые были “стимулом” для данной дискуссии. Он метил в основополагающую концепцию квантовой механики, а именно в утверждение, что невозможно определить время, когда произойдет испускание частицы из распадающегося ядра до тех пор, пока сам распад не зафиксирован. В квантовом мире ядро существует в “суперпозиции” состояний, что означает: до того как выполнено наблюдение, ядро одновременно существует в состоянии распада и остается стабильным. При наблюдении происходит коллапс волновой функции, и ядро переходит в одно из этих состояний.