Knigionline.co » Наука, Образование » Достучаться до небес. Научный взгляд на устройство Вселенной

Достучаться до небес. Научный взгляд на устройство Вселенной - Лиза Рэндалл (2011)

Достучаться до небес. Научный взгляд на устройство Вселенной
  • Год:
    2011
  • Название:
    Достучаться до небес. Научный взгляд на устройство Вселенной
  • Автор:
  • Жанр:
  • Язык:
    Русский
  • Перевел:
    Наталья Лисова
  • Издательство:
    Альпина Диджитал
  • Страниц:
    25
  • ISBN:
    978-5-9614-3349-4
  • Рейтинг:
    0 (0 голос)
  • Ваша оценка:
Население земли стоит на пороге свежего осознания мира и собственного пространства во Вселенной – считает влиятельный южноамериканский ученый, доктор физики Гарвардского института Лиза Рэндалл, и приглашает нас в интересное поездка по просторам ситуации научных открытий. Особенное пространство в книжке отведено новым и наиболее весомым разработкам в физике примитивных частиц; происшествиям сотворения и основам воздействия Большущего адронного коллайдера, к которому приковано забота всего мира; обсуждения вопроса меж конкурирующими точками зрения на пространство человека в универсуме. Содержательный и совместно с что доходчивый рассказ знакомит читателя со свежайшими научными мыслями и достижениями, шаг за шагом приближающими человека к осознанию прибора мироздания. «Жаклин мгновенно подчеркнула Роналда Редферна из массы встречающих. Возвышенный широкоплечий молоденький мужик в темных джинсах, популярном твидовом пиджаке и с прекрасными светлыми волосами. Да, не подметить аналогичного красавчика элементарно нельзя. Во всяком случае, для подобный, как она, восприимчивой и темпераментной девицы.
К огорчению, Жаклин должна была сознаться для себя в том, собственно что ей временами.»

Достучаться до небес. Научный взгляд на устройство Вселенной - Лиза Рэндалл читать онлайн бесплатно полную версию книги

Корпускулярная теория света, предложенная Ньютоном, подтверждается наблюдаемыми результатами. Тем не менее ньютоновы частицы света не имеют волновой природы и потому совсем не похожи на фотоны. Насколько мы сегодня знаем, теория фотонов представляет собой самое фундаментальное и верное описание света – потока частиц, которые могут приобретать волновые свойства. В настоящее время базисное описание того, что представляет собой свет и как он себя ведет, дает квантовая механика. Эта теория фундаментально верна и останется в науке.

В настоящее время квантовая механика находится гораздо ближе к передовым областям научных исследований, нежели оптика. Если кто-то по-прежнему думает о новых открытиях в оптике, то имеет в виду в первую очередь новые эффекты, возможные только в рамках квантовой механики. Современная наука уже не развивает классическую оптику, но, безусловно, включает в себя квантовую оптику, науку о квантово-механических свойствах света. Лазеры работают по законам квантовой механики; то же можно сказать и о детекторах света, таких как фотоумножители, и о фотоэлементах, превращающих солнечный свет в электричество.

Современная физика элементарных частиц включает в себя также теорию квантовой электродинамики (КЭД), разработанную Ричардом Фейнманом и другими учеными. В нее входят не только квантовая механика, но и специальная теория относительности. В КЭД мы занимаемся изучением отдельных частиц, в том числе фотонов – частиц света, а также электронов и других частиц, переносящих электрический заряд. Мы способны разобраться в скоростях, на которых взаимодействуют эти частицы и с которыми они могут создаваться и уничтожаться. КЭД – одна из тех теорий, которые очень активно используются в физике элементарных частиц. Кроме того, именно в ее рамках делаются самые достоверные научные предсказания. КЭД совершенно не похожа на геометрическую оптику, но обе эти теории верны, каждая в соответствующей области.

В каждой области физики имеется своя эффективная теория. По мере развития науки старые идеи уходят на второй план и становятся составной частью более фундаментальных теорий. Но передовые исследования в науке посвящены не им. В конце этой главы мы рассмотрели конкретный пример – развитие физических представлений о природе света, но следует отметить, что таким образом развивается вся физика. На передовом крае науки развитие происходит неуверенно, но в целом методично. Эффективные теории в каждом конкретном масштабе игнорируют, как им и положено, те эффекты, которые не влияют ни на какие измерения. Знания и методы, обретенные в прошлом, остаются с нами, но, по мере того как мы начинаем осваивать более широкий спектр расстояний и энергий, теории получают новое развитие. Движение вперед позволяет нам разобраться в фундаментальной основе наблюдаемых явлений.

Понимание исторического пути развития науки помогает лучше понять ее природу и по достоинству оценить крупнейшие вопросы, которыми заняты сегодня физики (и другие ученые). В следующей главе мы увидим, что сегодняшние научные методы зародились еще в XVII в.

Глава 2

Раскрывая секреты

Методы, которыми пользуются сегодня ученые, – результат долгой истории измерений и наблюдений. С их помощью ученые уже несколько веков подтверждают – и, что не менее важно, отвергают – научные идеи и гипотезы.

Многие принципиальные открытия, сформировавшие науку, были сделаны в XVII в. в Италии, и одним из ключевых участников этого процесса был Галилео Галилей. Именно он одним из первых в полной мере оценил и начал развивать так называемые непрямые измерения, при которых используется некий промежуточный этап[10]; он же одним из первых начал для установления научной истины разрабатывать и проводить эксперименты. Более того, он изобрел абстрактные мысленные эксперименты, которые помогали ему формулировать научные гипотезы.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий