Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд
-
Название:Программируя Вселенную. Квантовый компьютер и будущее науки
-
Автор:
-
Жанр:
-
Язык:Русский
-
Перевел:Анна Стативка
-
Издательство:Альпина Диджитал
-
Страниц:126
-
ISBN:978-5-91671-270-4, 978-5-91671-324-4
-
Рейтинг:
-
Ваша оценка:
Я с наслаждением пишу это особое вступление для издания книжки «Программируя Вселенную» на российском языке. Я желал бы поблагодарить Сергея Белоусова, Евгения Демлера, Мишу Лукина и всех сослуживцев из Русского квантового центра, которые несомненно помогли устроить вероятной публикацию сего российского перевода.»
Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд читать онлайн бесплатно полную версию книги
Наблюдение (или измерение, как его традиционно называют) разрушает интерференцию. Если измерения нет, частица благополучно проходит через обе щели сразу; при наличии измерения она проходит только через одну или другую щель. Другими словами, измерение всегда меняет поведение частицы. Когда мы спрашиваем частицу, где она находится, она вынуждена признаться, что находится в одном или в другом месте, но уже не в двух местах сразу.
Интересно отметить, что в описанном выше эксперименте измерение нарушает волну частицы независимо от того, щелкает ли датчик. По условию, датчик щелкает только в том случае, если частица проходит через правую щель, где он, собственно, и находится. Но если щелчка датчика нет, а это означает, что частица прошла через левую щель, интерференционная картина все равно разрушается, то есть измерение все еще нарушает волну частицы. Частице не нужно даже приближаться к датчику. (Как ваша голова, все еще кружится?)
Наш датчик не обязательно должен быть макроскопическим устройством. Все, что требуется для того, чтобы разрушить интерференционную картину, – это некая система сколь угодно малого размера, которая может получить информацию о положении частицы. Если частица сталкивается с пролетающим мимо электроном или молекулой воздуха, это тоже разрушит интерференционную картину!
Теперь ясно, почему мы видим большие объекты только в одном или в другом месте, но не в обоих сразу. Камни, люди и планеты постоянно взаимодействуют со своим окружением. Каждое взаимодействие с электроном, молекулой воздуха, частицей света локализует систему. Большие объекты взаимодействуют с большим количеством небольших объектов, каждый из которых получает информацию о местоположении большого объекта. Поэтому большие объекты, как правило, обнаруживаются или здесь, или там, но не здесь и там одновременно.
Процесс, при котором окружение разрушает волновую природу вещей, получая информацию о квантовой системе, называют декогерентностью. Декогерентность – очень распространенный процесс. Вспомните рассуждение, которое мы приводили выше об увеличении энтропии: почти любое взаимодействие между двумя объектами приводит к тому, что первый объект получает информацию о втором и наоборот. Как показывает феномен распространения неведения, такие взаимодействия заставляют энтропию объектов, взятых по отдельности, увеличиваться. Тот же механизм заставляет квантовые объекты вести себя более классическим способом.
Квантовые биты
В предыдущей главе каждый механизм, с помощью которого сохраняется, распространяется, стирается или увеличивается информация, мы проиллюстрировали простым примером – на битах. Чтобы понять, как действует квантовая механика, тоже было бы неплохо найти похожее квантово-механическое устройство. Хорошим примером квантово-механического бита, или кубита, является ядерный спин, например спин протонов и нейтронов в эффекте спинового эха. Вращению «вверх» традиционно ставится в соответствие значение 0, а вращение «вниз» имеет значение 1. Значение битов ядерного спина можно определить, пропустив спин через устройство, получившее название аппарата Штерна – Герлаха. Этот прибор отличает 0 от 1, смещая ядра со спином «вверх» в одном направлении, а ядра со спином «вниз» – в противоположном, и их положения фиксируются на фотографической пластинке. Оба возможных значения спина соответствуют волнам: если волна движется против часовой стрелки, это вращение «вверх» (или 0), а если она движется по часовой стрелке, это вращение «вниз» (или 1). Волну, соответствующую 0, обычно обозначают символом |0>, а волну, соответствующую 1, обозначают символом |1>. Символ «|>», своеобразные «скобки», имеет математическое значение, но для наших целей здесь оно служит просто обозначением того, что заключенное внутри них содержимое является квантово-механическим объектом – волной[23].