Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд
-
Название:Программируя Вселенную. Квантовый компьютер и будущее науки
-
Автор:
-
Жанр:
-
Язык:Русский
-
Перевел:Анна Стативка
-
Издательство:Альпина Диджитал
-
Страниц:126
-
ISBN:978-5-91671-270-4, 978-5-91671-324-4
-
Рейтинг:
-
Ваша оценка:
Я с наслаждением пишу это особое вступление для издания книжки «Программируя Вселенную» на российском языке. Я желал бы поблагодарить Сергея Белоусова, Евгения Демлера, Мишу Лукина и всех сослуживцев из Русского квантового центра, которые несомненно помогли устроить вероятной публикацию сего российского перевода.»
Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд читать онлайн бесплатно полную версию книги
Возникла ли жизнь в процессе автокаталитических реакций? Возможно. Мы не узнаем этого до тех пор, пока не установим коммутационную схему и программу для автокаталитического набора, в котором впервые родились клетки и гены[45]. Вычислительная универсальность автокаталитических наборов позволяет утверждать, что некоторые такие программы существуют, но это не значит, что такая программа проста или ее легко найти.
И снова многомировая интерпретация
В книге «Ткань реальности» (The Fabric of Reality), написанной в 1997 г., физик Дэвид Дойч пылко защищает многомировую интерпретацию квантовой механики с точки зрения квантовых вычислений. Прежде чем завершить изложение, давайте кратко рассмотрим смысл, в котором могут существовать другие миры – такие, какими их видят Дойч и Борхес.
Вселенная, которую мы видим вокруг, соответствует только одной из ряда декогерентных историй; то, что мы видим, когда смотрим в окно, – лишь один элемент суперпозиции состояний, составляющих полное квантовое состояние Вселенной. Другие элементы этого состояния соответствуют «другим мирам», мирам, где кости в квантовой игре выпали по-другому. Набор всех возможных миров составляет Мультивселенную (или Мультиверс). Оставляю читателю решить, существуют ли эти другие миры в том же смысле, как наш. Так или иначе, существуют они или нет, но до тех пор, пока они декогерентны, эти миры не могут оказать никакого влияния на наш мир.
Заметим, что наша история является эффективно сложной. Как и другие истории в наборе декогерентных историй, наша – результат огромного множества бросков в квантовой игре в кости. (Если быть точным, примерно 1092 бросков). Тем не менее полное квантовое состояние Вселенной остается простым: Вселенная начинается из простого состояния и развивается согласно простым законам.
Как наша история, которая является только частью всего состояния Вселенной, может быть эффективно сложнее, чем целое? В этом нет ничего особенно парадоксального: набор всех чисел, состоящих из миллиарда битов, описать легко, но чтобы описать почти любое отдельное число из этого набора, нужен миллиард битов. Тот же самый принцип касается состояния Мультивселенной. Чтобы описать отдельный элемент суперпозиции, может потребоваться около 1092 битов, а для описания всего состояния в целом хватает всего нескольких битов. В случае вычислительной Вселенной ее общее состояние описать легко: Мультивселенная выполняет все возможные вычисления квантово-параллельным образом. Но, чтобы выделить и указать любое отдельное из этих вычислений, нужно «собрать» все биты, соответствующие программе для этого вычисления. Для его описания может потребоваться очень много битов.
Когда Мультивселенная вычисляет, каждое возможное вычисление квантово параллельным образом включено в ее полное состояние. Вероятность любого данного вычисления равна вероятности того, что обезьяны введут в компьютер его программу. Согласно гипотезе Чёрча-Тьюринга, каждая возможная математическая структура представлена в том или ином компоненте суперпозиции. Одна такая математическая структура – это структура, которую мы видим вокруг, каждую деталь которой мы наблюдаем, включая законы физики, химии и биологии. В других компонентах суперпозиции эти детали будут другими. В каком-то из компонентов все остальное будет таким же, но у меня будут не голубые глаза, а карие. В каком-то из компонентов может даже случиться так, что некоторые свойства Стандартной модели элементарных частиц, например массы кварков, будут отличаться от их масс в нашей компоненте суперпозиции.