Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд
-
Название:Программируя Вселенную. Квантовый компьютер и будущее науки
-
Автор:
-
Жанр:
-
Язык:Русский
-
Перевел:Анна Стативка
-
Издательство:Альпина Диджитал
-
Страниц:126
-
ISBN:978-5-91671-270-4, 978-5-91671-324-4
-
Рейтинг:
-
Ваша оценка:
Я с наслаждением пишу это особое вступление для издания книжки «Программируя Вселенную» на российском языке. Я желал бы поблагодарить Сергея Белоусова, Евгения Демлера, Мишу Лукина и всех сослуживцев из Русского квантового центра, которые несомненно помогли устроить вероятной публикацию сего российского перевода.»
Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд читать онлайн бесплатно полную версию книги
Рэй Соломонофф первоначально определил алгоритмическую информацию в процессе поиска формальной математической теории бритвы Оккама. Средневекового философа Уильяма Оккама интересовала возможность найти самое простое объяснение наблюдаемых явлений. «Pluralitas non est ponenda sin necessitate», – объявил он («Не следует множить сущности без необходимости»). Оккам призывал искать и принимать простые объяснения явлений, отклоняя сложные. Он, безусловно, посмеялся бы над теми, кто пытался объяснить наличие регулярных линий на поверхности Марса существованием марсиан. Эти линии можно было объяснить геологическими разломами или оптической иллюзией, что не требует присутствия марсиан. Привлекать марсиан для того, чтобы объяснить линии на Марсе, это и есть «умножение сущности без необходимости», или, проще говоря, попытка сделать вещи сложнее, чем они есть. Бритва Оккама «отрезает» сложные объяснения, указывая, что простые априорно более вероятны.
Соломонофф использовал идею алгоритмического информационного содержания для того, чтобы придать принципу бритвы Оккама математическую точность. Предположим, у нас есть некий ряд данных, выраженный в строке битов. Мы ищем механизмы, которые, вероятно, могли бы произвести эту строку битов. На языке вычислений мы ищем такие компьютерные программы, которые могли бы выдать эту строку битов в качестве выходных данных. Среди таких программ, утверждал Соломонофф, самая короткая программа является по природе своей наиболее разумным кандидатом для получения нашей строки.
Но в какой степени она лучше других? В 1970-х гг. Грегори Хайтин и его коллега Чарльз Беннетт из IBM рассмотрели алгоритмическую информацию с точки зрения печатающих обезьян. Предположим, обезьяна набирает на клавиатуре случайные строки битов и вводит их в компьютер. Компьютер интерпретирует эти строки как программы, написанные на подходящем языке, скажем на Java. Какова вероятность того, что компьютер выдаст первый миллион цифр числа p? Такая же, как и вероятность того, что случайные строки, введенные в компьютер обезьяной, воспроизведут программу на Java, позволяющую вычислить первый миллион цифр числа p. Вероятность того, что обезьяна правильно напечатает первый бит такой программы, разумеется, составляет 0,5, или 1/2. Вероятность того, что она правильно напечатает два первых бита, составляет 0,25, или 1/4. Вероятность того, что правильно будут напечатаны первые 1000 битов, есть 1/2, умноженная на себя 1000 раз, или 1/21000. Это очень малое число. Очевидно, чем длиннее программа, тем менее вероятно, что обезьяна правильно введет ее в компьютер.
Вероятность того, что случайная программа, которую обезьяна вводит в компьютер, выдаст первый миллион цифр числа p, называют «алгоритмической вероятностью» числа p. Поскольку вероятность случайно правильно набрать длинную программу многократно меньше, чем вероятность правильно набрать короткую, алгоритмическая вероятность максимальна для самых коротких программ. Самая короткая программа, которая может дать на выходе то или иное число, является самым вероятным объяснением того, как это число было создано.
Если взглянуть на это под другим углом, то числа, создаваемые короткими программами, с большей вероятностью окажутся выходом обезьяньего компьютера, чем числа, которые могут быть произведены лишь с помощью длинных программ. При этом множество красивых и сложных математических образов – правильные геометрические формы, фракталы, законы квантовой механики, элементарные частицы, законы химии – можно задать с помощью коротких компьютерных программ. Хотите верьте, хотите нет, но у обезьяны есть хороший шанс создать все, что мы видим вокруг!