Застольные беседы - Плутарх
-
Название:Застольные беседы
-
Автор:
-
Жанр:
-
Серия:
-
Оригинал:Греческий
-
Язык:Русский
-
Перевел:Яков Боровский
-
Издательство:Алисторус
-
Страниц:232
-
ISBN:978-5-486-03387-2
-
Рейтинг:
-
Ваша оценка:
Застольные беседы - Плутарх читать онлайн бесплатно полную версию книги
2. После Тиндара выступил его товарищ Флор, в шутку притворявшийся и объявлявший себя влюбленным в него. "Ты заслуживаешь благодарности, - сказал он, - произнеся речь, которая выражает не только твое, но общее мнение всех присутствующих. Ведь ты дал возможность показать, что Платон считал геометрию необходимой не для богов, а для нас: бог не нуждается в математическом образовании как средстве, уводящем разум от творимых вещей к вечным сущностям, ибо эти сущности находятся в нем самом и с ним и вокруг него. Но подумай вот о чем: не намекнул ли Платон, незаметно для тебя, на нечто тебе близкое, {29} подмешав к Сократу Ликурга не в меньшей степени, чем Пифагора, на что указывал Дикеарх. {30} Ты, конечно, знаешь, что Ликург отменил в Лакедемоне арифметическую пропорциональность как демократическую и охлократическую {31} [b] и ввел вместо нее геометрическую, подобающую разумной олигархии и конституционной монархии: в первом, арифметическом, случае все распределяется поровну, а во втором, геометрическом, по достоинству, так что избегается смешение всех без разбора и проводится отчетливое различие добрых и худых: каждый получает свое не по назначенному весу и не по жребию, а в соответствии со своими заслугами и недостатками. Такую пропорциональность, именуемую справедливостью (δίκη) и воздаянием (νέμεσις), дорогой Тиндар, вносит бог в распорядок вещей, и она учит нас справедливое принимать за равное ('ίsov), но не усматривать справедливость в равенстве: то равенство, которого добивается толпа, - величайшая из всех несправедливостей. Устраняя ее по мере [с] возможности, бог соблюдает воздаяние по достоинству, геометрически определяя закономерность соответствием с разумным началом".
{29 ...на нечто тебе близкое... — Тнндар, как следует из 717 Е, — лакедемонянин.}
{30 ...на что указывал Дикеарх. — FHG II 243.}
{31 ...арифметическую пропорциональность как демократическую и охлократическую... — О социальном понимании равенства см. примеч. 110 к книге II. Ср. в жизнеописании Солона (14) приписываемое Солону изречение «равенство не производит мятежа», цитируется также: Plu. De frat. am. 484 В.}
3. Мы эту речь одобрили, но Тиндар изъявил несогласие и вызвал Автобула {32} выступить с возражением. Тот, однако, от возражения отказался, а предпочел противопоставить сказанному свое собственное мнение. Он сказал, что геометрия рассматривает не что иное, как пределы свойств и изменений, {33} и что бог не иначе творит мир, {34} как полагая пределы матерпп, которая сама по себе беспредельна, не в смысле величины и множественности, а в силу ее неустроенности и беспорядочности, что и дало древним основание назвать ее беспредельностью (τὸ 'άπειρον). {35} [d] Ведь форма и образ - это предел {36} оформленной и получившей образ всеобщности, и пока не было пределов, она оставалась бесформенной и безобразной; когда же в ней возникли числа и отношения, она, как бы связанная и охваченная линиями и возникшими из линий поверхностями, а из поверхностей - объемами, {37} получила первые виды различных тел как оснований для рождения воздуха, {38} земли, воды и огня. Но вывести равенство граней и подобие углов в октаэдрах, икосаэдрах, пирамидах и кубах из беспорядочной и зыбкой материи {39} было бы совершенно невозможно [e] без участия геометрически расчленяющего и ограничивающего ее творца. {40} Итак, с возникновением в беспредельной материи предела ограниченная и благоупорядоченная в своем смешении всецелостность родилась и продолжает рождаться, ибо материя стремится уйти от геометричности, вернувшись к беспредельному состоянию, а геометрический смысл охватывает и определяет ее, расчленяя на различные виды, сообразно которым все рождающееся получило свое возникновение и существование.
{32 Автобул — сын Плутарха.}