Knigionline.co » Наука, Образование » Философы Древней Греции

Философы Древней Греции - Роберт Брамбо (2010)

Философы Древней Греции
Книга Роберта Брамбо, профессора философии Чикагского колледжа, содержит жития мыслителей, основателей античной идеи, и наиболее поное истолкование их исследовательских теорий, ставших ядром общемировой философии и послуживших неисчерпаемым истоком всех более поздних концепций и гипотез.

Философы Древней Греции - Роберт Брамбо читать онлайн бесплатно полную версию книги

Если же вас не убедило это деление на два, у Зенона есть вторая головоломка – загадка об Ахилле и черепахе. В ней вы должны снова представить себя на стадионе. Вы смотрите на соревнование по бегу между Ахиллом и черепахой. Поскольку черепаха движется гораздо медленнее, Ахилл позволяет ей стартовать впереди него. Но это ошибка: сделав это, Ахилл никогда не догонит черепаху, говорит Зенон. К тому времени, как Ахилл добежит до места, откуда стартовала черепаха, та переместится вперед в какую-то другую точку. К тому времени, когда Ахилл доберется до этой второй точки, черепаха переместится еще дальше вперед. Так что Ахилл никогда не сможет обогнать черепаху. Греческие слушатели Зенона, несомненно, в первый момент реагировали на это словами: «Но мы же знаем, что в настоящем беге Ахилл обогнал бы черепаху и победил», а потом, немного подумав, приходили ко второй мысли: «Да, конечно, он бы ее обогнал. Но как?» Поскольку нас нелегко убедить в том, что логичные рассуждения ведут к заключению, совершенно противоположному реальности, вызов Зенона побуждает к действию – обосновать, почему становится возможным обогнать черепаху. Мы возвращаемся к его рассказу и даже рисуем схему состязания так, как его описал Зенон, чтобы увидеть, где он сделал какое-то неверное допущение о расстоянии, скорости или движении. Эта схема вылядит так:

«АХИЛЛ И ЧЕРЕПАХА» ЗЕНОНА

А( – место, откуда стартует Ахилл, Т( – место, откуда стартует черепаха. К тому времени, как Ахилл добегает из А( в А2, черепаха перемещается в Т2; пока Ахилл бежит из А2 в А3, черепаха снова перемещается вперед из Т2 в Т3; и так до бесконечности. Эта схема тоже как будто подтверждает, что черепаха выигрывает состязание.

Третий парадокс Зенона, парадокс о стреле, самый простой из четырех, но, как показала история, самый сильный из них стимулятор для мысли. «Если летящая стрела в каждый момент времени находится в покое и занимает пространство, равное ее длине, то когда она движется?» В самом деле, когда? Этот вопрос хорошо бы задавать математикам и физикам, когда они начинают говорить нам о «состояниях» или «моментах», которые представляют собой «вещи в нерастянутом отрезке времени». Как можно построить движение из таких статических моментальных кадров покоя? Этот вопрос будет интересен для них и для любого другого человека тоже.

Четвертая загадка Зенона заставляет нас еще раз вернуться на стадион. Ахилл и черепаха ушли – может быть, вопреки Зенону, они все-таки дошли до двери, – и вместо них перед нами три движущихся «тела» – повозки или колесницы, – выстроенные в определенном порядке. Одна стоит, вторая проезжает мимо нее. Сколько времени нужно второй, чтобы проехать расстояние, равное длине колесницы?

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий