BIG DATA. Вся технология в одной книге - Андреас Вайгенд (2017)
-
Год:2017
-
Название:BIG DATA. Вся технология в одной книге
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:С. М. Богданов
-
Издательство:Эксмо
-
Страниц:50
-
ISBN:978-5-04-094117-9
-
Рейтинг:
-
Ваша оценка:
BIG DATA. Вся технология в одной книге - Андреас Вайгенд читать онлайн бесплатно полную версию книги
Для Reddit в первую очередь важно то, что огромному числу разных людей действительно интересно содержание дискуссий на «горячих», «набирающих обороты» и «скандальных» страницах сайта, а не «официальное» авторство. Дискуссии, попадающие в список двадцати пяти топовых тем на этих страницах, обычно вызывают пристальное внимание всего интернета. Чтобы снизить уровень «фальсификаций при голосовании», когда одни и те же люди выступают под разными именами не для того, чтобы высказаться, а для того, чтобы «заплюсовать» свои посты и «заминусовать» чужие, в Reddit не стали тратить кучу денег и времени на модераторов, следящих за соблюдением порядка, а положились на машинное обучение. Когда одновременно появляется множество активных псевдонимов, идущих с одного IP-адреса или пишущих в одинаковом стиле, их «объединяют в одно производство» как «соучастников». Голоса, поданные «соучастниками», имеют меньший вес, а иногда просто игнорируются.
Честные сигналы
В 2016 году более 100 миллионов человек обратились к приложениям или интернет-сайтам в поисках знакомств для легких связей, любовных встреч или долговременных отношений. Требуется найти человека, которому нужно то, что предлагается, и обладающего тем, что нужно, и – само трудное – проявляющего ответный интерес.
В том, что касается знакомств, некоторые люди время от времени бывают кое в чем правдивы. Уровень правдивости варьируется в зависимости от характера человека и от ситуации. Иногда люди просто экспериментируют, чтобы понять, чего они хотят на самом деле. Разговоры – это одно. То, что человек делает, – другое. Сигналы, которые следуют из фактических поступков людей, социологи назвали «честными сигналами».
Дизайн пользовательского интерфейса приложения знакомств и разработка алгоритмов рекомендаций – особенно трудная задача, поскольку пользователь может «официально» считать привлекательными одни черты, а характер его работы с сайтом свидетельствовать о совершенно других предпочтениях. Один из создателей сайта OkCupid Кристиан Руддер доказал, что пользователи могут не полностью осознавать свои расовые и этнические предпочтения или не желать в них признаваться[123]. Но простой подсчет кликов и запросов о контакте быстро выявляет такие предпочтения.
Это несколько напоминает старую проблему с оценками кинофильмов. Когда Netflix просит пользователей высказать мнение о фильмах, получивших высокую оценку критиков, вроде игрового «Гражданина Кейна» или документального «Черного плавника», огромная часть людей выставляет им «пятерки», будучи уверены, что они обязаны оценить их именно так: ведь «все» сказали, что это отличное кино. Netflix может рекомендовать клиенту фильмы на основе его оценок, но это имеет смысл только в случае, если это честные оценки. Но люди должны убедиться в том, что правдивые ответы – в их собственных интересах. В Netflix пришли к выводу, что самым честным сигналом об интересе к определенному жанру кино является продолжительность стримминга видео до момента выхода из него. Другими словами, для составления рекомендаций данные о просмотрах полезнее, чем данные об оценках фильмов[124]. Профессор социальной психологии Мичиганского университета Ричард Нисбетт утверждает, что люди часто не понимают когнитивные процессы, определяющие их поступки и решения. Наши способности к самопознанию и самонаблюдению достаточно ограничены[125].